Selective inhibition of KCC2 leads to hyperexcitability and epileptiform discharges in hippocampal slices and in vivo.

نویسندگان

  • Sudhir Sivakumaran
  • Ross A Cardarelli
  • Jamie Maguire
  • Matt R Kelley
  • Liliya Silayeva
  • Danielle H Morrow
  • Jayanta Mukherjee
  • Yvonne E Moore
  • Robert J Mather
  • Mark E Duggan
  • Nicholas J Brandon
  • John Dunlop
  • Stephen Zicha
  • Stephen J Moss
  • Tarek Z Deeb
چکیده

GABA(A) receptors form Cl(-) permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K(+)/Cl(-) cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl(-) levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization. Here we used the selective KCC2 inhibitor VU0463271 [N-cyclopropyl-N-(4-methyl-2-thiazolyl)-2-[(6-phenyl-3-pyridazinyl)thio]acetamide] to investigate the influence of KCC2 function. Application of VU0463271 caused a reversible depolarizing shift in E(GABA) values and increased spiking of cultured hippocampal neurons. Application of VU0463271 to mouse hippocampal slices under low-Mg(2+) conditions induced unremitting recurrent epileptiform discharges. Finally, microinfusion of VU0463271 alone directly into the mouse dorsal hippocampus rapidly caused epileptiform discharges. Our findings indicated that KCC2 function was a critical inhibitory factor ex vivo and in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proconvulsive effect of hydrochlorothiazide in an in vitro rat seizure model

Objective(s):Protective effects of diuretics, particularly of hydrochlorothiazide (HCT), for the development of seizure attacksepilepsy have been described in vivo. However, itsthe mechanism of action of HCT is unknownneeds to be elucidated. Materials and Methods: Extracellular field potentials were recorded from the CA1- and CA3-subfields of the hippocampus of rats. Epileptiform discharges wer...

متن کامل

Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices

Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...

متن کامل

Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer’s Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade

Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer's disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3...

متن کامل

Epileptiform activity triggers long-term plasticity of GABA(B) receptor signalling in the developing rat hippocampus.

GABA(B) receptor (GABA(B)R)-mediated presynaptic inhibition regulates neurotransmitter release from synaptic terminals. In the neonatal hippocampus, GABA(B)R activation reduces GABA release and terminates spontaneous network discharges called giant depolarizing potentials (GDPs). Blocking GABA(B)Rs transforms GDPs into longer epileptiform discharges. Thus, GABA(B)R-mediated presynaptic inhibiti...

متن کامل

Category: Tissue, system and organ physiology Epileptiform Activity Triggers Long-Term Plasticity of GABAB Receptor Signalling in the Developing Rat Hippocampus Abbreviated title: Long-Term Plasticity of GABAB Receptor Signalling

GABAB receptor (GABABR)-mediated presynaptic inhibition regulates neurotransmitter release from synaptic terminals. In the neonatal hippocampus, GABABR activation reduces GABA release and terminates spontaneous network discharges called Giant Depolarising Potentials (GDPs). Blocking GABABRs transforms GDPs into longer epileptiform discharges. Thus, GABABR-mediated presynaptic inhibition of GABA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 21  شماره 

صفحات  -

تاریخ انتشار 2015